Applied Cryptography

1. **GENERAL**

	-			
SCHOOL	ENGINEERING			
DEPARTMENT	INFORMATICS AND COMPUTER ENGINEERING			
LEVEL OF STUDY	POST-GRADUATE			
COURSE UNIT CODE	CSCYB10	CSCYB10 SEMESTER OF 1 st		1 st
	3		STUDY	
COURSE TITLE	Applied Cryptography			
COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS	ECTS Credits	
Lectures		3		
Tutorials		1		
		4	8	
COURSE UNIT TYPE	Compulsory, Specialized general knowledge			
COURSE DELIVERED TO	YES			
ERASMUS STUDENTS				
MODULE WEB PAGE (URL)	https://eclass.uniwa.gr/courses/CSCYB105/			

2.LEARNING OUTCOMES

Learning Outcomes

- An introduction on cryptographic definitions and notions
- Familiarization with security issues
- Understanding of the cryptographic protocols capabilities
- The skills to select the most adequate cryptographic solutions for given security problem.

General Skills

- Search for optimal cryptographic solutions
- Independent work

3.COURSE CONTENTS

The description contains the material to be covered during 13 sessions.

- 1) Introduction to cryptography. History of cryptography and definitions
- 2) Mathematical background. Modular computations, Boolean functions, birthday paradox
- 3) Pseudorandom generators and stream ciphers
- 4) Pseudorandom functions. Block ciphers (AES) and modes of operation (CBC,CTR).
- 5) One way functions and hash functions (SHA-2, SHA-3).
- 6) Message Authentication codes. HMAC and ECBC.
- 7) Authenticated encryption with associated data (GCM).
- 8) Public key cryptography. RSA and secure implementations. The problem of factorization
- 9) El Gamal and elliptic curves. The discrete logarithm problem.
- 10) Digital signatures. Digital signature algorithm, EdDSA.
- 11) Attacks against symmetric and public key encryption protocols
- 12) Key Encapsulation Mechanism, Key encryption, Diffie-Hellman Key agreement, and authentication protocols

13) Advanced cryptography: MPC, ORAM, Homomorphic encryption

MODE OF DELIVERY	Face to face		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICT in Course Teaching Use of the Open e-Class system, with uploaded notes, lectures, exercises for practice and communication with students. 		
TEACHING METHODS	Method description	Semester Workload	
	Lectures	39	
	Tutorials	39	
	Research work	50	
	Self study	60	
	Total course hours (25 h workload per ECTS)	188	
ASSESSMENT METHODS			
	I. A written final examination (60%) and II. Research work (40%)		

5.RESOURCES

Essential

- Introduction to Modern Cryptography, Jonathan Katz and Yehuda Lindell (2nd Edition!)
- Cryptography Made Simple. Nigel Smart. Springer

Recommended

- ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)
- ENISA, Algorithms, key size and parameters, report 2014
- ECRYPT CSA, Algorithms, Key Size and Protocols Report (2018)

3. **DATABASE SYSTEMS SECURITY**

1. **GENERAL**

SCHOOL	ENGINEERING				
DEPARTMENT	INFORMATICS AND COMPUTER ENGINEERING				
LEVEL OF STUDY	POST-GRADUATE				
COURSE UNIT CODE	CSCYB205	SEMESTER OF 2nd		d	
		STUDY			
COURSE TITLE	Database Systems Security				
COURSEWORK BREAKDOWN		TEACHINO WEEKLY HOURS	-	ECTS Credits	
		3			
	Tutorials 2				
			5		7
COURSE UNIT TYPE	Compulsory, Specialized general knowledge				
PREREQUISITES :	NONE				

LANGUAGE OF	GREEK, ENGLISH
INSTRUCTION/EXAMS:	
COURSE DELIVERED TO	YES
ERASMUS STUDENTS	
MODULE WEB PAGE	
(URL)	

2. LEARNING OUTCOMES

Learning Outcomes

- To understand the risks that exists in data publishing
- To know the existing options for secure databases
- To design more secure databases

General Skills

- To be able to protect client's data from attacks
- To understand the main concept of big data and the trends and security risks of the modern applications
- To know which data should be protected

3.COURSE CONTENTS

The description contains the material to be covered during 13 sessions.

- Discretionary and mandatory access control
- Security protection capabilities of the SQL language
- Privacy protection for relational, spatial and graph data
- Privacy protection of data changing over time
- Digital watermarking and fingerprinting in relational databases.
- Encrypted databases and retrieval of encrypted data
- Security in statistical and distributed databases
- Big data security
- Data security and privacy protection in online social networks.
- Big data integration and security

4. TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	Face to face		
USE OF INFORMATION AND	Use of ICT in Course Teaching		
COMMUNICATION	• Use of the Open eClass system, with		
TECHNOLOGY	uploaded notes, lectures, exercises for		
	practice and communication with students.		
TEACHING METHODS	Method description	Semester Workload	
	Lectures	39	
	Tutorials	26	
	Research work	50	
	Self study	60	
	Total course hours (25 h workload per ECTS)	175	
ASSESSMENT METHODS			
	I. A written final examination (20%) and		
	II. Research work (80%)		

5.RESOURCES

Essential

- Privacy Preserving Data Publishing: An Overview, Synthesis Lectures on Data Management, 2010, Raymond Chi Wing Wong, Ada Wai Chee Fu
- Συστήματα Διαχείρισης Βάσεων Δεδομένων, 3η Έκδοση, Ramakrishnan Raghu, Gehrke Joahannes. (Κεφάλαιο 24)
- Θεμελιώδεις αρχές συστημάτων βάσεων δεδομένων, Elmasri Ramez, Navathe Shamkant B.B (Κεφάλαιο 17)
- Rakesh Agrawal and Jerry Kiernan. 2002. Watermarking relational databases. In Proceedings of the 28th international conference on Very Large Data Bases

Recommended

- Chen, Bee Chung & Kifer, Daniel & LeFevre, Kristen & Machanavajjhala, Ashwin. (2009). Privacy Preserving Data Publishing. Foundations and Trends in Databases.
- Fung, Benjamin & Wang, ke & Chen, Rui & Yu, Philip. (2010). Privacy Preserving Data Publishing: A Survey of Recent Developments. ACM Comput. Surv. . 42.
- Watermarking Techniques for Relational Databases: Survey, Classification and Comparison, Raju Halder, Shantanu Pal and Agostino Cortesi